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Let H(p) = Trn(p)—n(Trp) be the extension of the von Neumann
entropy to the cone T (H) s.t. H(A\p) = AH(p) (n(x) = —zlogx)

I(A:C|B)w = H(wap) + H(wpc) — H(wapc) — H(wp). (1)

Basic properties:

1) I(A:C|B)y > 0 for any state wypc and I(A:C|B), = 0 if
and only if there is a channel ® : B — BC such that wapo =
Idy ® P(wap);

2) I(A:C|B)w > I(A": C'|B) g ,gldped(w) TOr arbitrary guantum
operations ® 4 : A — A’ and &, : C — C7;



3) monotonicity under loc. conditioning: I(AB:C)y,> I(A:C|B)w

4) additivity: I(AA":CC"|BB') g = I(A:C|B)w + I(A":C"|B’)

5) duality: I(A:C|B), = I(A:C|D), for any pure state wapcp.

Operational meaning: communication cost of the quantum state
redistribution protocol [I.Devetak, J.Yard, Phys. Rev. Lett. 100,
230501 (2008)]



Question: How to define I(A : C|B), for states with infinite
marginal entropies?

Motivating example: the quantum mutual information
I(A:B)w = H(wa) + H(wp) — H(wap)
is well-defined for any state wyp by the formula
I[(A:B)w = H(wap||lwa ® wp)
Properties of the relative entropy show that wap — I(A: B)uw

is a lower semicontinuous function on &(H 4p) taking values in
[0, +00] and possessing all basic properties of mutual information.



Partial answers:

I(A:C|B)y = I(A: BO)w — I(A:B)w, I(A:B)y < +oo
I(A:C|B)w = I(AB:C)w — I(B:)w, I(B:C)y < +oo
I(A:C|B)y=I(A:C)y, —I(A:B)y, — I(C:B)y,+ I(AC: B),
H(wp) < +o0
I(A:C|B)y = I(A:C)u+I(AB:D)5;+ I(BC:D)g
+ I(AC:D)gz — 4H(wapc), H(wapc) < oo,

where W pop 1S any purification of the state wypc.

Question: Do formulas (2)-(5) agree with each other?

(2)
(3)
(4)

(5)



Let Sx be a subset of G(H 4pc) Where formula (X) is well defined.

Theorem 1. There exists a uniqgue lower semicontinuous function
Ie(A:C|B)y on the set 6(H 4pc) such that:

e [c(A:C|B), coincides with I(A:C|B)y given by (1),(2), (3),
(4), (5) respectively on the sets &1,65,63,64,65;

e Ic(A: C|B)y, possesses the above-stated properties 1-5 of
conditional mutual information.



This function can be defined by one of the equivalent expressions

Ie(A:C|B)w = sup 1(A:BC)ouo — I(A:B)guo|, Q= Ps®IpRIc,
! |

Ie(A:C|B)w = sup I(AB:C)gug — I(B:C)ouwo|, @ =I140IpaP,
sl |

where the suprema are over all finite rank projectors Py € B(H ).

For an arbitrary state w € &(Hapcp) the following property is
valid:

Ie(A:C|B)y = Iim Iim I(A:C|B), i,
k— o0 [—00 w

where

WM =2 Qrw Qs Qu = Pj ® P ® PE® Ph, Ay = TrQpw.

[Theorem 2,Corollary 9 in arxiv:1506.06377]



Short Markov chains and recovery maps

Th.l = {wapc|I(A:C|B), =0} isa closed subset of S(H 4pc)-

If I(A:B) is finite then the existence of a channel ® : B — BC
such that wypeo = Idgy ® P(wyp) follows from Petz's theorem
[P.Hayden, R.Jozsa, D.Petz, A.Winter, CMP 246:2, 359-374].

If I(A:B)y, = 4oco then the existence of a recovery channel is
proved by using the compactness criterion:

A sequence {$,} of quantum operations A — B is relatively

compact in the strong convergence topology if there is a full rank

state p4 such that the sequence {d,(p4)} is relatively compact.
[A.S.Holevo,M.E.Shirokov, arXiv:0711.2245]

Open question: geometric structure of short Markov chains.



On existence of the Fawzi-Renner recovery channel for all states

For any state wypco with finite marginal entropies there exists a
recovery channel & : B — BC such that

1 .
2—§I(A.C|B)w < F(WABC7 IdA 04 CD(WAB))

where F(p,o0) = |\/pv/ol|1 is the quantum fidelity between states
pand o. [O.Fawzi, R.Renner arXiv:1410.0664, D.Sutter, O.Fawzi,
R.Renner arXiv:1504.07251].

The above compactness criterion and the lower semicontinuity
of I(A : C|B), make possible to show the existence of Fawzi-
Renner channel ® such that [®(wp)]g = wp and [P (wp)]c = we
for arbitrary state wgpc starting from the corresponding finite-
dimensional result in arXiv:1410.0664. [Prop.4 in arxiv:1506.06377]



Corollaries of the lower semicontinuity of I(A:C|B)

Corollary 1. Local continuity of one of the marginal entropies

H(wya), H(we), H(wap), H(wac)
implies local continuity of I(A:C|B)w, i.e.

lim H((w%) = H(w%) <40 = nli_)mOOI(A:C|B)wn = I(A:C|B)_ o

n—oo

X = A,C,AB, BC, for any sequence w? 5~ — w5

n 0 i n 0
Corollary 2. Let Wiz — wyp and there exists W pr = Wiy S-T.

im H(wjp) = H(wig) < +oo then |im I(A:B)n — I(A:B), 0

n—oo



Corollary 3. For any q. operations ® : A — A" and Vv : B — B’
the nonnegative function wyp — [[(A:B)w — I(A’:B’)CD@W(M)} is
lower semicontinuous.

Local continuity of the function wyp +— I(A: B), implies local
continuity of the function wap = I(A": B) pgw(w)-

Example: Let {w’z} be a sequence of Gaussian states with
bounded energy of A converging to a state ‘*C%B then

im_I(A": B g (wn) = I(A": B') gy (.0)

n—oo

for arbitrary quantum channels ® : A - A’ and vV : B —» B/,

The above results are valid for I(A: B|C') (instead of I(A:B)).



A sequence {{p}, pI'} }n converges to an ensemble {p?,pzo} if

im pP =p? Vi and lim pl' =p? Vi:p? #O0.

n—oo n—oo
The Holevo quantity
x({pi,pi}) = I(A:B)g, Wwhere G p=>,;pip;® |i)(il.

Corollary 4. For any channel ® : A — A’ the nonnegative

function {p;, i} = [xUpi pi}) — x{pi» P(p))})] is lower semicontinuous
on the set of all countable ensembles of states in G(H 4).

Local continuity of x({p;, p;}) implies local continuity of x({p;, ®(p;)}):

x({% o) = x({p2, 091 < +o0 = x({pP, P (M) }) — x({p?, P (pD)})

for any sequence {{p}, pi'} }n converging to an ensemble {p,?,p?}.



Different continuity bounds for I(A:C|B) and their use.

Lemma 1. Let V4 be an operator in B(H 4) such that ||[V4]| <1
and wypc be a state with finite H(wy4). Then

0<I(A:C|B)w—I(A:C|B)gy <2[H(wa) —H(VawaVi],
and hence

—26H(VywaV}) < I(A:C|B)w—I(A:C|B) 5 <2[H(wy) — H(VawasVi)],
Trw

where &ABC:VA(@IBCWABCVZ@IBC and § = 1}?}5‘”.

[Lemma 9 in arXiv:1507.08964]



Winter’s type continuity bound for I(A:C|B).

Let H4 be the Hamiltonian of system A such that Tre PHA < ~+ o0
for all 8> 0 and ~(F) is the Gibbs state for energy FE.

Winter's technique [arXiv:1507.07775] + Lemma 1 =

Proposition 1. Let p g and UABC be states/s t. TrH py < F,
TrH jo4 < E, 2||p—a|| <e<e <1 and § = ¢ 1—I—’ Then

I(A:C|B), — I(A:C|B)o| < (26'+46)H(7(E/6))+29(c") +4ha(5),

where g(z) = (14 2)h2(15;) = (z+ 1) log(z 4 1) — zlog =.

This continuity bound is asymptotically tight (for large E) even
for trivial B, i.e. in the case I(A : C|B) = I(A : C). Since
I|m ov(E/§) = 0, it implies uniform continuity of I(A:C|B) on

the set of states with bounded energy of A.



Continuity bounds for E;; and for Er under energy constraints.

Corollary 5. Let wl 5 and w?, be statess.t. TrH wh < E, k=

/_
1,2, and |w% g —wiglli = and Let & € (&,1] and & = gH_\f.
Then

Esq(wip) — Bsq(whp)| < (¢ +28) H((E/5)) + g(') 4 2h2(6)

The same continuity bound is valid for the entanglement of
formation Ep.

Since gin?) ov(E /) = 0, Corollary 5 implies asymptotic continuity
_>

of Esq and Er under the energy constrain on one subsystem (see
details in [arXiv:1507.08964]).



Special continuity bound for I(A: B|C).

By using the Alicki-Fannes-Winter technic one can obtain the
following lemma (in which A, B and C are arbitrary systems).

Lemma 2. Let papo and oyppco be states having extensions
pABCE and g apcg such that pygr and o4 are finite rank states.
Then I(A:B|C), and I(A:B|C)s are finite and

| I(A:B|C),— I(A:B|C)s| < 2elogd+ 2g(e), (6)

lp—all1.

N

where d = dim (Supp pag VSuppaoag) and € =

If p and o are qc-states with respect to the decomposition
(AE)(BC) then the factor 2 in (6) can be removed.



Lemma 2 makes possible to obtain estimates for variation of
information characteristic of quantum channels depending on
their input dimension.

The Bures distance: g(®, V) = inf ||Vgp — Vi ||, where the infimum
IS over all common Stinespring representations:

P(p) = TrgVopVy and  W(p) = TrgVypVy).

The Bures distance is equivalent to the diamond norm distance:

Sl — Wjo < B, W) < \/]|d — W,

[D.Kretschmann, D.Schlingemann, R.F.Werner, arXiv:0710.2495]



Proposition 2. Let ® : A — B and Vv : A — B be arbitrary
quantum channels and C be any system. Let pao and oy be
states with finite rank marginals p4 and o4. Then

I(B: ) aida(p) — (B Clygida(o)) < 2e109(2d4) +29(e),  (7)

where dj = dim (SUpppa Vsuppaoya), € = 3llp —o|l1 + (P, V).
If ® = W then the factor 2 in (7) can be removed.

If pgc and oy are qc-states then the first factor 2 in (7) can
be removed.

Continuity bound (7) is tight in the both cases ® = W and

p = o. The Bures distance g(®,WV) in (7) can be replaced by

1/2
o — w2



Corollary 6. Let ® : A — B and W : A — B be arbitrary
quantum channels. Let {p;, p;} and {q;,0;} be ensembles of states
in G(H 4) supported by d4-dimensional subspace ”H% C H4. Then

Ix{pi, P(pi)}) — x({ai, V(o) })| < elog(2dy) + 2g(¢), (8)

where & = 3 |Ipipi — qioill1 + B(P, W), g(e) = (1 + E)hz(lig)-
If ® = WV then the factor 2 in (8) can be removed.

Continuity bound (8) is tight in the both cases & = W and

{p;i, pi} = {q;,0;}. The Bures distance g(®,WV) in (8) can be

replaced by || — \IJ||<1>/2.



The Leung-Smith telescopic trick [CMP,292,201-215], the chain
rule for I(A:C|B) and lemma 2 imply the following

Proposition 3. Let ® : A — B and Vv : A — B be arbitrary
quantum channels, C be any system and n € N. Let py4, 4,c be
a state such that py,,...,p4, are finite rank states. Then

)[(Bn : C)¢®”®Idc(p) - [(Bn : C)\V‘X)”@Idc(p)‘ < 2”(5 |Og(2dA)—|—g(€)),

1
where ¢ = (P, V) and dy = [ r=1 rankpAk] "

This continuity bound is tight (for each given n and large dj4).
The Bures distance g(®, W) in it can be replaced by ||CI>—\IJ||<1> 2

If dmHy < 400 then one can take dy = dimH 4.



Theorem 2. Let ® and W be quantum channels from finite-
dimensional system A to arbitrary system B. Then

C(P) —C(W)| <elogdy +elog 24 2g(e), (9)
C(P) — C(W)| < 2elogd 4 + 2¢10g 2 + 24(z), (10)
Cea(P) — Cea(WV)| < 2elogdy + 2g(e), (11)
Q(P) — Q(W)| < 2elogdy + 2¢log 2 + 2g(e), (12)
1Cp(®) — Cp(W)| < 2elogdy + 2e10g2 + 4g(s),  (13)
|Cp(P) — Cp(W)| < 4delogdy + 4elog 2 + 4g(e), (14)

where dy = dimH 4, ¢ = 8(P, W) and g(€)=(1—|—€)h2(1_€|_6>.

The continuity bounds (9),(11),(12) and (13) are tight.



Thank you for your attention!



