Conditional mutual information in

infinite-dimensional quantum systems and

its use

M.E.Shirokov
Steklov Mathematical Institute

Let $H(\rho)=\operatorname{Tr} \eta(\rho)-\eta(\operatorname{Tr} \rho)$ be the extension of the von Neumann entropy to the cone $\mathfrak{T}_{+}(\mathcal{H})$ s.t. $H(\lambda \rho)=\lambda H(\rho)(\eta(x)=-x \log x)$

$$
\begin{equation*}
I(A: C \mid B)_{\omega} \doteq H\left(\omega_{A B}\right)+H\left(\omega_{B C}\right)-H\left(\omega_{A B C}\right)-H\left(\omega_{B}\right) \tag{1}
\end{equation*}
$$

Basic properties:

1) $I(A: C \mid B)_{\omega} \geq 0$ for any state $\omega_{A B C}$ and $I(A: C \mid B)_{\omega}=0$ if and only if there is a channel $\Phi: B \rightarrow B C$ such that $\omega_{A B C}=$ $\mathrm{Id}_{A} \otimes \Phi\left(\omega_{A B}\right) ;$
2) $I(A: C \mid B)_{\omega} \geq I\left(A^{\prime}: C^{\prime} \mid B\right)_{\Phi_{A} \otimes \mathrm{Id}_{B} \otimes \Phi_{C}(\omega)}$ for arbitrary quantum operations $\Phi_{A}: A \rightarrow A^{\prime}$ and $\Phi_{C}: C \rightarrow C^{\prime}$;
3) monotonicity under loc. conditioning: $I(A B: C)_{\omega} \geq I(A: C \mid B)_{\omega}$
4) additivity: $I\left(A A^{\prime}: C C^{\prime} \mid B B^{\prime}\right)_{\omega \otimes \omega^{\prime}}=I(A: C \mid B)_{\omega}+I\left(A^{\prime}: C^{\prime} \mid B^{\prime}\right)_{\omega^{\prime}}$;
5) duality: $I(A: C \mid B)_{\omega}=I(A: C \mid D)_{\omega}$ for any pure state $\omega_{A B C D}$.

Operational meaning: communication cost of the quantum state redistribution protocol [I.Devetak, J.Yard, Phys. Rev. Lett. 100, 230501 (2008)]

Question: How to define $I(A: C \mid B)_{\omega}$ for states with infinite marginal entropies?

Motivating example: the quantum mutual information

$$
I(A: B)_{\omega} \doteq H\left(\omega_{A}\right)+H\left(\omega_{B}\right)-H\left(\omega_{A B}\right)
$$

is well-defined for any state $\omega_{A B}$ by the formula

$$
I(A: B)_{\omega} \doteq H\left(\omega_{A B} \| \omega_{A} \otimes \omega_{B}\right)
$$

Properties of the relative entropy show that $\omega_{A B} \mapsto I(A: B)_{\omega}$ is a lower semicontinuous function on $\mathfrak{S}\left(\mathcal{H}_{A B}\right)$ taking values in $[0,+\infty]$ and possessing all basic properties of mutual information.

Partial answers:

$$
\begin{align*}
I(A: C \mid B)_{\omega}= & I(A: B C)_{\omega}-I(A: B)_{\omega}, \quad I(A: B)_{\omega}<+\infty \tag{2}\\
I(A: C \mid B)_{\omega}= & I(A B: C)_{\omega}-I(B: C)_{\omega}, \quad I(B: C)_{\omega}<+\infty \tag{3}\\
I(A: C \mid B)_{\omega}= & I(A: C)_{\omega}-I(A: B)_{\omega}-I(C: B)_{\omega}+I(A C: B)_{\omega}, \tag{4}\\
& H\left(\omega_{B}\right)<+\infty \\
I(A: C \mid B)_{\omega}= & I(A: C)_{\omega}+I(A B: D)_{\tilde{\omega}}+I(B C: D)_{\tilde{\omega}} \\
+ & +I(A C: D)_{\tilde{\omega}}-4 H\left(\omega_{A B C}\right), \quad H\left(\omega_{A B C}\right)<+\infty, \tag{5}
\end{align*}
$$

where $\tilde{\omega}_{A B C D}$ is any purification of the state $\omega_{A B C}$.
Question: Do formulas (2)-(5) agree with each other?

Let \mathfrak{S}_{\times}be a subset of $\mathfrak{S}\left(\mathcal{H}_{A B C}\right)$ where formula (X) is well defined.

Theorem 1. There exists a unique lower semicontinuous function $I_{\mathrm{e}}(A: C \mid B)_{\omega}$ on the set $\mathfrak{S}\left(\mathcal{H}_{A B C}\right)$ such that:

- $I_{e}(A: C \mid B)_{\omega}$ coincides with $I(A: C \mid B)_{\omega}$ given by (1),(2), (3), (4), (5) respectively on the sets $\mathfrak{S}_{1}, \mathfrak{S}_{2}, \mathfrak{S}_{3}, \mathfrak{S}_{4}, \mathfrak{S}_{5}$;
- $I_{\mathrm{e}}(A: C \mid B)_{\omega}$ possesses the above-stated properties 1-5 of conditional mutual information.

This function can be defined by one of the equivalent expressions $I_{\mathrm{e}}(A: C \mid B)_{\omega}=\sup _{P_{A}}\left[I(A: B C)_{Q \omega Q}-I(A: B)_{Q \omega Q}\right], \quad Q=P_{A} \otimes I_{B} \otimes I_{C}$, $I_{\mathrm{e}}(A: C \mid B)_{\omega}=\sup _{P_{C}}\left[I(A B: C)_{Q \omega Q}-I(B: C)_{Q \omega Q}\right], \quad Q=I_{A} \otimes I_{B} \otimes P_{C}$, where the suprema are over all finite rank projectors $P_{X} \in \mathfrak{B}\left(\mathcal{H}_{X}\right)$.

For an arbitrary state $\omega \in \mathfrak{S}\left(\mathcal{H}_{A B C D}\right)$ the following property is valid:

$$
I_{\mathrm{e}}(A: C \mid B)_{\omega}=\lim _{k \rightarrow \infty} \lim _{l \rightarrow \infty} I(A: C \mid B)_{\omega^{k l}},
$$

where

$$
\omega^{k l}=\lambda_{k l}^{-1} Q_{k l} \omega Q_{k l}, \quad Q_{k l}=P_{A}^{k} \otimes P_{B}^{l} \otimes P_{C}^{k} \otimes P_{D}^{l}, \lambda_{k l}=\operatorname{Tr} Q_{k l} \omega .
$$

[Theorem 2, Corollary 9 in arxiv:1506.06377]

Short Markov chains and recovery maps

Th. $1 \Rightarrow\left\{\omega_{A B C} \mid I(A: C \mid B)_{\omega}=0\right\}$ is a closed subset of $\mathfrak{S}\left(\mathcal{H}_{A B C}\right)$.
If $I(A: B)_{\omega}$ is finite then the existence of a channel $\Phi: B \rightarrow B C$ such that $\omega_{A B C}=\operatorname{Id}_{A} \otimes \Phi\left(\omega_{A B}\right)$ follows from Petz's theorem [P.Hayden, R.Jozsa, D.Petz, A.Winter, CMP 246:2, 359-374].

If $I(A: B)_{\omega}=+\infty$ then the existence of a recovery channel is proved by using the compactness criterion:

A sequence $\left\{\Phi_{n}\right\}$ of quantum operations $A \rightarrow B$ is relatively compact in the strong convergence topology if there is a full rank state ρ_{A} such that the sequence $\left\{\Phi_{n}\left(\rho_{A}\right)\right\}$ is relatively compact.
[A.S.Holevo,M.E.Shirokov, arXiv:0711.2245]
Open question: geometric structure of short Markov chains.

On existence of the Fawzi-Renner recovery channel for all states

For any state $\omega_{A B C}$ with finite marginal entropies there exists a recovery channel $\Phi: B \rightarrow B C$ such that

$$
2^{-\frac{1}{2} I(A: C \mid B)_{\omega}} \leq F\left(\omega_{A B C}, \operatorname{Id}_{A} \otimes \Phi\left(\omega_{A B}\right)\right)
$$

where $F(\rho, \sigma) \doteq\|\sqrt{\rho} \sqrt{\sigma}\|_{1}$ is the quantum fidelity between states ρ and σ. [O.Fawzi, R.Renner arXiv:1410.0664, D.Sutter, O.Fawzi, R.Renner arXiv:1504.07251].

The above compactness criterion and the lower semicontinuity of $I(A: C \mid B)_{\omega}$ make possible to show the existence of FawziRenner channel Φ such that $\left[\Phi\left(\omega_{B}\right)\right]_{B}=\omega_{B}$ and $\left[\Phi\left(\omega_{B}\right)\right]_{C}=\omega_{C}$ for arbitrary state $\omega_{A B C}$ starting from the corresponding finitedimensional result in arXiv:1410.0664. [Prop. 4 in arxiv:1506.06377]

Corollaries of the lower semicontinuity of $I(A: C \mid B)$

Corollary 1. Local continuity of one of the marginal entropies

$$
H\left(\omega_{A}\right), H\left(\omega_{C}\right), H\left(\omega_{A B}\right), H\left(\omega_{A C}\right)
$$

implies local continuity of $I(A: C \mid B)_{\omega}$, i.e.
$\lim _{n \rightarrow \infty} H\left(\omega_{X}^{n}\right)=H\left(\omega_{X}^{0}\right)<+\infty \Rightarrow \lim _{n \rightarrow \infty} I(A: C \mid B)_{\omega^{n}}=I(A: C \mid B)_{\omega^{0}}$
$X=A, C, A B, B C$, for any sequence $\omega_{A B C}^{n} \rightarrow \omega_{A B C}^{0}$.
Corollary 2. Let $\omega_{A B}^{n} \rightarrow \omega_{A B}^{0}$ and there exists $\omega_{A B E}^{n} \rightarrow \omega_{A B E}^{0}$ s.t.
$\lim _{n \rightarrow \infty} H\left(\omega_{A E}^{n}\right)=H\left(\omega_{A E}^{0}\right)<+\infty$ then $\lim _{n \rightarrow \infty} I(A: B)_{\omega^{n}} \rightarrow I(A: B)_{\omega^{0}}$

Corollary 3. For any q . operations $\Phi: A \rightarrow A^{\prime}$ and $\psi: B \rightarrow B^{\prime}$ the nonnegative function $\omega_{A B} \mapsto\left[I(A: B)_{\omega}-I\left(A^{\prime}: B^{\prime}\right)_{\Phi \otimes \Psi(\omega)}\right]$ is lower semicontinuous.

Local continuity of the function $\omega_{A B} \mapsto I(A: B)_{\omega}$ implies local continuity of the function $\omega_{A B} \mapsto I\left(A^{\prime}: B^{\prime}\right)_{\Phi \otimes \psi(\omega)}$.

Example: Let $\left\{\omega_{A B}^{n}\right\}$ be a sequence of Gaussian states with bounded energy of A converging to a state $\omega_{A B}^{0}$ then

$$
\lim _{n \rightarrow \infty} I\left(A^{\prime}: B^{\prime}\right)_{\Phi \otimes \Psi\left(\omega^{n}\right)}=I\left(A^{\prime}: B^{\prime}\right)_{\Phi \otimes \Psi\left(\omega^{0}\right)}
$$

for arbitrary quantum channels $\Phi: A \rightarrow A^{\prime}$ and $\psi: B \rightarrow B^{\prime}$.

The above results are valid for $I(A: B \mid C)$ (instead of $I(A: B)$).

A sequence $\left\{\left\{p_{i}^{n}, \rho_{i}^{n}\right\}\right\}_{n}$ converges to an ensemble $\left\{p_{i}^{0}, \rho_{i}^{0}\right\}$ if

$$
\lim _{n \rightarrow \infty} p_{i}^{n}=p_{i}^{0} \quad \forall i \quad \text { and } \quad \lim _{n \rightarrow \infty} \rho_{i}^{n}=\rho_{i}^{0} \quad \forall i: p_{i}^{0} \neq 0
$$

The Holevo quantity

$$
\chi\left(\left\{p_{i}, \rho_{i}\right\}\right)=I(A: B)_{\widehat{\omega}}, \quad \text { where } \quad \widehat{\omega}_{A B}=\sum_{i} p_{i} \rho_{i} \otimes|i\rangle\langle i|
$$

Corollary 4. For any channel $\Phi: A \rightarrow A^{\prime}$ the nonnegative function $\left\{p_{i}, \rho_{i}\right\} \mapsto\left[\chi\left(\left\{p_{i}, \rho_{i}\right\}\right)-\chi\left(\left\{p_{i}, \Phi\left(\rho_{i}\right)\right\}\right)\right]$ is lower semicontinuous on the set of all countable ensembles of states in $\mathfrak{S}\left(\mathcal{H}_{A}\right)$.
Local continuity of $\chi\left(\left\{p_{i}, \rho_{i}\right\}\right)$ implies local continuity of $\chi\left(\left\{p_{i}, \Phi\left(\rho_{i}\right)\right\}\right)$:
$\chi\left(\left\{p_{i}^{n}, \rho_{i}^{n}\right\}\right) \rightarrow \chi\left(\left\{p_{i}^{0}, \rho_{i}^{0}\right\}\right)<+\infty \Rightarrow \chi\left(\left\{p_{i}^{n}, \Phi\left(\rho_{i}^{n}\right)\right\}\right) \rightarrow \chi\left(\left\{p_{i}^{0}, \Phi\left(\rho_{i}^{0}\right)\right\}\right)$
for any sequence $\left\{\left\{p_{i}^{n}, \rho_{i}^{n}\right\}\right\}_{n}$ converging to an ensemble $\left\{p_{i}^{0}, \rho_{i}^{0}\right\}$.

Different continuity bounds for $I(A: C \mid B)$ and their use.

Lemma 1. Let V_{A} be an operator in $\mathfrak{B}\left(\mathcal{H}_{A}\right)$ such that $\left\|V_{A}\right\| \leq 1$ and $\omega_{A B C}$ be a state with finite $H\left(\omega_{A}\right)$. Then

$$
0 \leq I(A: C \mid B)_{\omega}-I(A: C \mid B)_{\tilde{\omega}} \leq 2\left[H\left(\omega_{A}\right)-H\left(V_{A} \omega_{A} V_{A}^{*}\right)\right],
$$

and hence
$-2 \delta H\left(V_{A} \omega_{A} V_{A}^{*}\right) \leq I(A: C \mid B)_{\omega}-I(A: C \mid B)_{\frac{\tilde{\omega}}{T \tilde{\omega}}} \leq 2\left[H\left(\omega_{A}\right)-H\left(V_{A} \omega_{A} V_{A}^{*}\right)\right]$,
where $\tilde{\omega}_{A B C}=V_{A} \otimes I_{B C} \omega_{A B C} V_{A}^{*} \otimes I_{B C}$ and $\delta=\frac{1-\operatorname{Tr} \tilde{\omega}}{\operatorname{Tr} \tilde{\omega}}$.
[Lemma 9 in arXiv:1507.08964]

Winter's type continuity bound for $I(A: C \mid B)$.
Let H_{A} be the Hamiltonian of system A such that $\operatorname{Tr} e^{-\beta H_{A}}<+\infty$ for all $\beta>0$ and $\gamma(E)$ is the Gibbs state for energy E.

Winter's technique [arXiv:1507.07775] + Lemma $1=$
Proposition 1. Let $\rho_{A B C}$ and $\sigma_{A B C}$ be states, s.t. $\operatorname{Tr} H_{A} \rho_{A} \leq E$, $\operatorname{Tr} H_{A} \sigma_{A} \leq E, \frac{1}{2}\|\rho-\sigma\|_{1} \leq \varepsilon<\varepsilon^{\prime} \leq 1$ and $\delta=\frac{\varepsilon^{\prime}-\varepsilon}{1+\varepsilon \varepsilon^{\prime}}$. Then
$\left|I(A: C \mid B)_{\rho}-I(A: C \mid B)_{\sigma}\right| \leq\left(2 \varepsilon^{\prime}+4 \delta\right) H(\gamma(E / \delta))+2 g\left(\varepsilon^{\prime}\right)+4 h_{2}(\delta)$,
where $g(x)=(1+x) h_{2}\left(\frac{x}{1+x}\right)=(x+1) \log (x+1)-x \log x$.
This continuity bound is asymptotically tight (for large E) even for trivial B, i.e. in the case $I(A: C \mid B)=I(A: C)$. Since $\lim _{\delta \rightarrow 0} \delta \gamma(E / \delta)=0$, it implies uniform continuity of $I(A: C \mid B)$ on the set of states with bounded energy of A.

Continuity bounds for $E_{s q}$ and for E_{F} under energy constraints.

Corollary 5. Let $\omega_{A B}^{1}$ and $\omega_{A B}^{2}$ be states s.t. $\operatorname{Tr} H_{A} \omega_{A}^{k} \leq E, k=$ 1,2 , and $\left\|\omega_{A B}^{2}-\omega_{A B}^{1}\right\|_{1}=\varepsilon$ and Let $\varepsilon^{\prime} \in(\sqrt{\varepsilon}, 1]$ and $\delta=\frac{\varepsilon^{\prime}-\sqrt{\varepsilon}}{1+\varepsilon^{\prime}}$. Then

$$
\left|E_{s q}\left(\omega_{A B}^{2}\right)-E_{s q}\left(\omega_{A B}^{1}\right)\right| \leq\left(\varepsilon^{\prime}+2 \delta\right) H(\gamma(E / \delta))+g\left(\varepsilon^{\prime}\right)+2 h_{2}(\delta)
$$

The same continuity bound is valid for the entanglement of formation E_{F}.

Since $\lim _{\delta \rightarrow 0} \delta \gamma(E / \delta)=0$, Corollary 5 implies asymptotic continuity of $E_{s q}$ and E_{F} under the energy constrain on one subsystem (see details in [arXiv:1507.08964]).

Special continuity bound for $I(A: B \mid C)$.

By using the Alicki-Fannes-Winter technic one can obtain the following lemma (in which A, B and C are arbitrary systems).

Lemma 2. Let $\rho_{A B C}$ and $\sigma_{A B C}$ be states having extensions $\hat{\rho}_{A B C E}$ and $\widehat{\sigma}_{A B C E}$ such that $\hat{\rho}_{A E}$ and $\widehat{\sigma}_{A E}$ are finite rank states. Then $I(A: B \mid C)_{\rho}$ and $I(A: B \mid C)_{\sigma}$ are finite and

$$
\begin{equation*}
\left|I(A: B \mid C)_{\rho}-I(A: B \mid C)_{\sigma}\right| \leq 2 \varepsilon \log d+2 g(\varepsilon) \tag{6}
\end{equation*}
$$

where $d \doteq \operatorname{dim}\left(\operatorname{supp} \hat{\rho}_{A E} \vee \operatorname{supp} \widehat{\sigma}_{A E}\right)$ and $\varepsilon=\frac{1}{2}\|\hat{\rho}-\widehat{\sigma}\|_{1}$.

If $\hat{\rho}$ and $\hat{\sigma}$ are qc-states with respect to the decomposition $(A E)(B C)$ then the factor 2 in (6) can be removed.

Lemma 2 makes possible to obtain estimates for variation of information characteristic of quantum channels depending on their input dimension.

The Bures distance: $\beta(\Phi, \Psi)=\inf \left\|V_{\Phi}-V_{\psi}\right\|$, where the infimum is over all common Stinespring representations:

$$
\Phi(\rho)=\operatorname{Tr}_{E} V_{\Phi} \rho V_{\Phi}^{*} \quad \text { and } \quad \psi(\rho)=\operatorname{Tr}_{E} V_{\psi} \rho V_{\psi}^{*}
$$

The Bures distance is equivalent to the diamond norm distance:

$$
\frac{1}{2}\|\Phi-\Psi\|_{\diamond} \leq \beta(\Phi, \psi) \leq \sqrt{\|\Phi-\Psi\|_{\diamond}},
$$

[D.Kretschmann, D.Schlingemann, R.F.Werner, arXiv:0710.2495]

Proposition 2. Let $\Phi: A \rightarrow B$ and $\Psi: A \rightarrow B$ be arbitrary quantum channels and C be any system. Let $\rho_{A C}$ and $\sigma_{A C}$ be states with finite rank marginals ρ_{A} and σ_{A}. Then
$\left|I(B: C)_{\Phi \otimes \mathrm{Id}_{C}(\rho)}-I(B: C)_{\Psi \otimes \mathrm{Id}_{C}(\sigma)}\right| \leq 2 \varepsilon \log \left(2 d_{A}\right)+2 g(\varepsilon)$,
where $d_{A}=\operatorname{dim}\left(\operatorname{supp} \rho_{A} \vee \operatorname{supp} \sigma_{A}\right), \varepsilon=\frac{1}{2}\|\rho-\sigma\|_{1}+\beta(\Phi, \psi)$.
If $\Phi=\psi$ then the factor 2 in (7) can be removed.
If $\rho_{A C}$ and $\sigma_{A C}$ are qc-states then the first factor 2 in (7) can be removed.

Continuity bound (7) is tight in the both cases $\Phi=\Psi$ and $\rho=\sigma$. The Bures distance $\beta(\Phi, \Psi)$ in (7) can be replaced by $\|\Phi-\psi\|_{\curvearrowright}^{1 / 2}$.

Corollary 6. Let $\Phi: A \rightarrow B$ and $\Psi: A \rightarrow B$ be arbitrary quantum channels. Let $\left\{p_{i}, \rho_{i}\right\}$ and $\left\{q_{i}, \sigma_{i}\right\}$ be ensembles of states in $\mathfrak{S}\left(\mathcal{H}_{A}\right)$ supported by d_{A}-dimensional subspace $\mathcal{H}_{A}^{0} \subseteq \mathcal{H}_{A}$. Then

$$
\begin{equation*}
\left|\chi\left(\left\{p_{i}, \Phi\left(\rho_{i}\right)\right\}\right)-\chi\left(\left\{q_{i}, \Psi\left(\sigma_{i}\right)\right\}\right)\right| \leq \varepsilon \log \left(2 d_{A}\right)+2 g(\varepsilon), \tag{8}
\end{equation*}
$$

where $\varepsilon=\frac{1}{2} \sum_{i}\left\|p_{i} \rho_{i}-q_{i} \sigma_{i}\right\|_{1}+\beta(\Phi, \Psi), g(\varepsilon)=(1+\varepsilon) h_{2}\left(\frac{\varepsilon}{1+\varepsilon}\right)$.
If $\Phi=\psi$ then the factor 2 in (8) can be removed.

Continuity bound (8) is tight in the both cases $\Phi=\Psi$ and $\left\{p_{i}, \rho_{i}\right\}=\left\{q_{i}, \sigma_{i}\right\}$. The Bures distance $\beta(\Phi, \Psi)$ in (8) can be replaced by $\|\Phi-\psi\|_{\diamond}^{1 / 2}$.

The Leung-Smith telescopic trick [CMP,292,201-215], the chain rule for $I(A: C \mid B)$ and lemma 2 imply the following

Proposition 3. Let $\Phi: A \rightarrow B$ and $\psi: A \rightarrow B$ be arbitrary quantum channels, C be any system and $n \in \mathbb{N}$. Let $\rho_{A_{1} \ldots A_{n} C}$ be a state such that $\rho_{A_{1}}, \ldots, \rho_{A_{n}}$ are finite rank states. Then
$\left|I\left(B^{n}: C\right)_{\Phi \otimes n \otimes \operatorname{Id}_{C}(\rho)}-I\left(B^{n}: C\right)_{\Psi \otimes n \otimes \operatorname{Id}_{C}(\rho)}\right| \leq 2 n\left(\varepsilon \log \left(2 d_{A}\right)+g(\varepsilon)\right)$, where $\varepsilon=\beta(\Phi, \Psi)$ and $d_{A} \doteq\left[\prod_{k=1}^{n} \operatorname{rank} \rho_{A_{k}}\right]^{1 / n}$.

This continuity bound is tight (for each given n and large d_{A}). The Bures distance $\beta(\Phi, \Psi)$ in it can be replaced by $\|\Phi-\Psi\|_{\diamond}^{1 / 2}$.

If $\operatorname{dim} \mathcal{H}_{A}<+\infty$ then one can take $d_{A} \doteq \operatorname{dim} \mathcal{H}_{A}$.

Theorem 2. Let Φ and ψ be quantum channels from finitedimensional system A to arbitrary system B. Then

$$
\begin{align*}
& |\bar{C}(\Phi)-\bar{C}(\Psi)| \leq \varepsilon \log d_{A}+\varepsilon \log 2+2 g(\varepsilon), \tag{9}\\
& |C(\Phi)-C(\Psi)| \leq 2 \varepsilon \log d_{A}+2 \varepsilon \log 2+2 g(\varepsilon), \tag{10}\\
& \left|C_{\mathrm{ea}}(\Phi)-C_{\mathrm{ea}}(\Psi)\right| \leq 2 \varepsilon \log d_{A}+2 g(\varepsilon), \tag{11}\\
& |Q(\Phi)-Q(\Psi)| \leq 2 \varepsilon \log d_{A}+2 \varepsilon \log 2+2 g(\varepsilon), \tag{12}\\
& \left|\bar{C}_{\mathrm{p}}(\Phi)-\bar{C}_{\mathrm{p}}(\Psi)\right| \leq 2 \varepsilon \log d_{A}+2 \varepsilon \log 2+4 g(\varepsilon), \tag{13}\\
& \left|C_{\mathrm{p}}(\Phi)-C_{\mathrm{p}}(\Psi)\right| \leq 4 \varepsilon \log d_{A}+4 \varepsilon \log 2+4 g(\varepsilon), \tag{14}
\end{align*}
$$

where $d_{A} \doteq \operatorname{dim} \mathcal{H}_{A}, \quad \varepsilon=\beta(\Phi, \Psi)$ and $g(\varepsilon)=(1+\varepsilon) h_{2}\left(\frac{\varepsilon}{1+\varepsilon}\right)$.
The continuity bounds (9),(11),(12) and (13) are tight.

Thank you for your attention!

