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Let H(ρ) = Trη(ρ)−η(Trρ) be the extension of the von Neumann
entropy to the cone T+(H) s.t. H(λρ) = λH(ρ) (η(x) = −x logx)

I(A :C|B)ω
.

= H(ωAB) +H(ωBC)−H(ωABC)−H(ωB). (1)

Basic properties:

1) I(A : C|B)ω ≥ 0 for any state ωABC and I(A : C|B)ω = 0 if
and only if there is a channel Φ : B → BC such that ωABC =
IdA ⊗Φ(ωAB);

2) I(A :C|B)ω ≥ I(A′ :C′|B)ΦA⊗IdB⊗ΦC(ω) for arbitrary quantum
operations ΦA : A→ A′ and ΦC : C → C′;



3) monotonicity under loc. conditioning: I(AB :C)ω≥ I(A :C|B)ω

4) additivity: I(AA′ :CC′|BB′)ω⊗ω′ = I(A :C|B)ω + I(A′ :C′|B′)ω′;

5) duality: I(A :C|B)ω = I(A :C|D)ω for any pure state ωABCD.

Operational meaning: communication cost of the quantum state
redistribution protocol [I.Devetak, J.Yard, Phys. Rev. Lett. 100,
230501 (2008)]



Question: How to define I(A : C|B)ω for states with infinite
marginal entropies?

Motivating example: the quantum mutual information

I(A :B)ω
.

= H(ωA) +H(ωB)−H(ωAB)

is well-defined for any state ωAB by the formula

I(A :B)ω
.

= H(ωAB ‖ωA ⊗ ωB)

Properties of the relative entropy show that ωAB 7→ I(A : B)ω
is a lower semicontinuous function on S(HAB) taking values in
[0,+∞] and possessing all basic properties of mutual information.



Partial answers:

I(A :C|B)ω = I(A :BC)ω − I(A :B)ω, I(A :B)ω < +∞ (2)

I(A :C|B)ω = I(AB :C)ω − I(B :C)ω, I(B :C)ω < +∞ (3)

I(A :C|B)ω = I(A :C)ω − I(A :B)ω − I(C :B)ω + I(AC :B)ω, (4)

H(ωB) < +∞

I(A :C|B)ω = I(A :C)ω + I(AB :D)ω̃ + I(BC :D)ω̃

+ I(AC :D)ω̃ − 4H(ωABC), H(ωABC) < +∞,
(5)

where ω̃ABCD is any purification of the state ωABC.

Question: Do formulas (2)-(5) agree with each other?



Let Sx be a subset of S(HABC) where formula (X) is well defined.

Theorem 1. There exists a unique lower semicontinuous function
Ie(A :C|B)ω on the set S(HABC) such that:

• Ie(A :C|B)ω coincides with I(A :C|B)ω given by (1),(2), (3),
(4), (5) respectively on the sets S1,S2,S3,S4,S5;

• Ie(A : C|B)ω possesses the above-stated properties 1-5 of
conditional mutual information.



This function can be defined by one of the equivalent expressions

Ie(A :C|B)ω = sup
PA

[
I(A :BC)QωQ − I(A :B)QωQ

]
, Q = PA⊗IB⊗IC,

Ie(A :C|B)ω = sup
PC

[
I(AB :C)QωQ − I(B :C)QωQ

]
, Q = IA⊗IB⊗PC,

where the suprema are over all finite rank projectors PX ∈ B(HX).

For an arbitrary state ω ∈ S(HABCD) the following property is
valid:

Ie(A :C|B)ω = lim
k→∞

lim
l→∞

I(A :C|B)ωkl,

where

ωkl = λ−1
kl Qkl ωQkl, Qkl = P kA ⊗ P

l
B ⊗ P

k
C ⊗ P

l
D, λkl = TrQklω.

[Theorem 2,Corollary 9 in arxiv:1506.06377]



Short Markov chains and recovery maps

Th.1 ⇒ {ωABC | I(A :C|B)ω = 0 } is a closed subset of S(HABC).

If I(A :B)ω is finite then the existence of a channel Φ : B → BC

such that ωABC = IdA ⊗ Φ(ωAB) follows from Petz’s theorem
[P.Hayden, R.Jozsa, D.Petz, A.Winter, CMP 246:2, 359-374].

If I(A : B)ω = +∞ then the existence of a recovery channel is
proved by using the compactness criterion:

A sequence {Φn} of quantum operations A → B is relatively
compact in the strong convergence topology if there is a full rank
state ρA such that the sequence {Φn(ρA)} is relatively compact.

[A.S.Holevo,M.E.Shirokov, arXiv:0711.2245]

Open question: geometric structure of short Markov chains.



On existence of the Fawzi-Renner recovery channel for all states

For any state ωABC with finite marginal entropies there exists a
recovery channel Φ : B → BC such that

2−
1
2I(A:C|B)ω ≤ F (ωABC, IdA ⊗Φ(ωAB))

where F (ρ, σ)
.

= ‖√ρ
√
σ‖1 is the quantum fidelity between states

ρ and σ. [O.Fawzi, R.Renner arXiv:1410.0664, D.Sutter, O.Fawzi,
R.Renner arXiv:1504.07251].

The above compactness criterion and the lower semicontinuity
of I(A : C|B)ω make possible to show the existence of Fawzi-
Renner channel Φ such that [Φ(ωB)]B = ωB and [Φ(ωB)]C = ωC
for arbitrary state ωABC starting from the corresponding finite-
dimensional result in arXiv:1410.0664. [Prop.4 in arxiv:1506.06377]



Corollaries of the lower semicontinuity of I(A :C|B)

Corollary 1. Local continuity of one of the marginal entropies

H(ωA), H(ωC), H(ωAB), H(ωAC)

implies local continuity of I(A :C|B)ω, i.e.

lim
n→∞H(ωnX) = H(ω0

X) < +∞ ⇒ lim
n→∞ I(A :C|B)ωn = I(A :C|B)ω0

X = A,C,AB,BC, for any sequence ωnABC → ω0
ABC.

Corollary 2. Let ωnAB → ω0
AB and there exists ωnABE → ω0

ABE s.t.

lim
n→∞H(ωnAE) = H(ω0

AE) < +∞ then lim
n→∞ I(A :B)ωn → I(A :B)ω0



Corollary 3. For any q. operations Φ : A → A′ and Ψ : B → B′

the nonnegative function ωAB 7→
[
I(A :B)ω − I(A′ :B′)Φ⊗Ψ(ω)

]
is

lower semicontinuous.

Local continuity of the function ωAB 7→ I(A :B)ω implies local
continuity of the function ωAB 7→ I(A′ :B′)Φ⊗Ψ(ω).

Example: Let {ωnAB} be a sequence of Gaussian states with
bounded energy of A converging to a state ω0

AB then

lim
n→∞ I(A′ :B′)Φ⊗Ψ(ωn) = I(A′ :B′)Φ⊗Ψ(ω0)

for arbitrary quantum channels Φ : A→ A′ and Ψ : B → B′.

The above results are valid for I(A :B|C) (instead of I(A :B)).



A sequence {{pni , ρ
n
i }}n converges to an ensemble {p0

i , ρ
0
i } if

lim
n→∞ p

n
i = p0

i ∀i and lim
n→∞ ρ

n
i = ρ0

i ∀i : p0
i 6= 0.

The Holevo quantity

χ({pi, ρi}) = I(A :B)ω̂, where ω̂AB =
∑
i piρi ⊗ |i〉〈i|.

Corollary 4. For any channel Φ : A → A′ the nonnegative
function {pi, ρi} 7→ [χ({pi, ρi})− χ({pi,Φ(ρi)})] is lower semicontinuous
on the set of all countable ensembles of states in S(HA).

Local continuity of χ({pi, ρi}) implies local continuity of χ({pi,Φ(ρi)}):

χ({pni , ρ
n
i })→ χ({p0

i , ρ
0
i }) < +∞ ⇒ χ({pni ,Φ(ρni )})→ χ({p0

i ,Φ(ρ0
i )})

for any sequence {{pni , ρ
n
i }}n converging to an ensemble {p0

i , ρ
0
i }.



Different continuity bounds for I(A :C|B) and their use.

Lemma 1. Let VA be an operator in B(HA) such that ‖VA‖ ≤ 1

and ωABC be a state with finite H(ωA). Then

0 ≤ I(A :C|B)ω − I(A :C|B)ω̃ ≤ 2
[
H(ωA)−H(VAωAV

∗
A)
]
,

and hence

−2δH(VAωAV
∗
A) ≤ I(A :C|B)ω−I(A :C|B) ω̃

Trω̃
≤ 2

[
H(ωA)−H(VAωAV

∗
A)
]
,

where ω̃ABC = VA ⊗ IBC ωABCV ∗A ⊗ IBC and δ = 1−Trω̃
Trω̃ .

[Lemma 9 in arXiv:1507.08964]



Winter’s type continuity bound for I(A :C|B).

Let HA be the Hamiltonian of system A such that Tre−βHA < +∞
for all β > 0 and γ(E) is the Gibbs state for energy E.

Winter’s technique [arXiv:1507.07775] + Lemma 1 =

Proposition 1. Let ρABC and σABC be states s.t. TrHAρA ≤ E,
TrHAσA ≤ E, 1

2‖ρ− σ‖1 ≤ ε < ε′ ≤ 1 and δ = ε′−ε
1+ε′. Then

|I(A :C|B)ρ − I(A :C|B)σ| ≤ (2ε′+4δ)H(γ(E/δ))+2g(ε′)+4h2(δ),

where g(x) = (1 + x)h2

(
x

1+x

)
= (x+ 1) log(x+ 1)− x logx.

This continuity bound is asymptotically tight (for large E) even
for trivial B, i.e. in the case I(A : C|B) = I(A : C). Since
lim
δ→0

δγ(E/δ) = 0, it implies uniform continuity of I(A :C|B) on

the set of states with bounded energy of A.



Continuity bounds for Esq and for EF under energy constraints.

Corollary 5. Let ω1
AB and ω2

AB be states s.t. TrHAω
k
A ≤ E, k =

1,2, and ‖ω2
AB − ω

1
AB‖1 = ε and Let ε′ ∈ (

√
ε,1] and δ = ε′−

√
ε

1+ε′ .
Then∣∣∣Esq(ω2

AB)− Esq(ω1
AB)

∣∣∣ ≤ (ε′+ 2δ)H(γ(E/δ)) + g(ε′) + 2h2(δ)

The same continuity bound is valid for the entanglement of
formation EF .

Since lim
δ→0

δγ(E/δ) = 0, Corollary 5 implies asymptotic continuity

of Esq and EF under the energy constrain on one subsystem (see
details in [arXiv:1507.08964]).



Special continuity bound for I(A :B|C).

By using the Alicki-Fannes-Winter technic one can obtain the
following lemma (in which A,B and C are arbitrary systems).

Lemma 2. Let ρABC and σABC be states having extensions
ρ̂ABCE and σ̂ABCE such that ρ̂AE and σ̂AE are finite rank states.
Then I(A :B|C)ρ and I(A :B|C)σ are finite and

|I(A :B|C)ρ − I(A :B|C)σ| ≤ 2ε log d+ 2g(ε), (6)

where d
.

= dim (supp ρ̂AE ∨ supp σ̂AE) and ε = 1
2‖ρ̂− σ̂‖1.

If ρ̂ and σ̂ are qc-states with respect to the decomposition
(AE)(BC) then the factor 2 in (6) can be removed.



Lemma 2 makes possible to obtain estimates for variation of
information characteristic of quantum channels depending on
their input dimension.

The Bures distance: β(Φ,Ψ) = inf ‖VΦ−VΨ‖, where the infimum
is over all common Stinespring representations:

Φ(ρ) = TrEVΦρV
∗

Φ and Ψ(ρ) = TrEVΨρV
∗

Ψ.

The Bures distance is equivalent to the diamond norm distance:

1
2‖Φ−Ψ‖� ≤ β(Φ,Ψ) ≤

√
‖Φ−Ψ‖�,

[D.Kretschmann, D.Schlingemann, R.F.Werner, arXiv:0710.2495]



Proposition 2. Let Φ : A → B and Ψ : A → B be arbitrary
quantum channels and C be any system. Let ρAC and σAC be
states with finite rank marginals ρA and σA. Then

|I(B :C)Φ⊗IdC(ρ) − I(B :C)Ψ⊗IdC(σ)| ≤ 2ε log(2dA) + 2g(ε), (7)

where dA = dim (supp ρA ∨ suppσA), ε = 1
2‖ρ− σ‖1 + β(Φ,Ψ).

If Φ = Ψ then the factor 2 in (7) can be removed.

If ρAC and σAC are qc-states then the first factor 2 in (7) can
be removed.

Continuity bound (7) is tight in the both cases Φ = Ψ and
ρ = σ. The Bures distance β(Φ,Ψ) in (7) can be replaced by
‖Φ−Ψ‖1/2

� .



Corollary 6. Let Φ : A → B and Ψ : A → B be arbitrary
quantum channels. Let {pi, ρi} and {qi, σi} be ensembles of states
in S(HA) supported by dA-dimensional subspace H0

A ⊆ HA. Then

|χ({pi,Φ(ρi)})− χ({qi,Ψ(σi)})| ≤ ε log(2dA) + 2g(ε), (8)

where ε = 1
2
∑
i ‖piρi − qiσi‖1 + β(Φ,Ψ), g(ε) = (1 + ε)h2

(
ε

1+ε

)
.

If Φ = Ψ then the factor 2 in (8) can be removed.

Continuity bound (8) is tight in the both cases Φ = Ψ and
{pi, ρi} = {qi, σi}. The Bures distance β(Φ,Ψ) in (8) can be

replaced by ‖Φ−Ψ‖1/2
� .



The Leung-Smith telescopic trick [CMP,292,201-215], the chain
rule for I(A :C|B) and lemma 2 imply the following

Proposition 3. Let Φ : A → B and Ψ : A → B be arbitrary
quantum channels, C be any system and n ∈ N. Let ρA1...AnC be
a state such that ρA1

, ..., ρAn are finite rank states. Then∣∣∣I(Bn :C)Φ⊗n⊗IdC(ρ) − I(Bn :C)Ψ⊗n⊗IdC(ρ)

∣∣∣ ≤ 2n(ε log(2dA)+g(ε)),

where ε = β(Φ,Ψ) and dA
.

=
[∏n

k=1 rankρAk

]1/n
.

This continuity bound is tight (for each given n and large dA).
The Bures distance β(Φ,Ψ) in it can be replaced by ‖Φ−Ψ‖1/2

� .

If dimHA < +∞ then one can take dA
.

= dimHA.



Theorem 2. Let Φ and Ψ be quantum channels from finite-
dimensional system A to arbitrary system B. Then

|C̄(Φ)− C̄(Ψ)| ≤ ε log dA + ε log 2 + 2g(ε), (9)

|C(Φ)− C(Ψ)| ≤ 2ε log dA + 2ε log 2 + 2g(ε), (10)

|Cea(Φ)− Cea(Ψ)| ≤ 2ε log dA + 2g(ε), (11)

|Q(Φ)−Q(Ψ)| ≤ 2ε log dA + 2ε log 2 + 2g(ε), (12)

|C̄p(Φ)− C̄p(Ψ)| ≤ 2ε log dA + 2ε log 2 + 4g(ε), (13)

|Cp(Φ)− Cp(Ψ)| ≤ 4ε log dA + 4ε log 2 + 4g(ε), (14)

where dA
.

= dimHA, ε = β(Φ,Ψ) and g(ε) = (1 + ε)h2

(
ε

1+ε

)
.

The continuity bounds (9),(11),(12) and (13) are tight.



Thank you for your attention!


