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Motivation and Outline

multipartite entanglement is a mess
... too many classes, too few applications for which it is a resource
generating multipartite entanglement (of individually accessible
modes) is fairly straightforward in the conmtinuous variable setting
[Silberhorn, Pfister, Furusawa, Schnabel, Treps, Peng, ...]

single squeezed state and a beam-splitter array is enough; many
squeezing processes are inherently multi-mode
up to 104 mode entanglement demonstrated [Yokoyama 2013]

Gaussian states are in many respect a very simple family, thanks
to the direct-sum structure of phase space

⇒ maybe the picture of Gaussian multipartite entanglement a little
clearer? (i) provide GLU classification, (ii) study some properties
under GLOCC
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Entanglement Classes

states φ, ψ represent essentially same resource if they can be
reversibly interconverted by “available” (local) operations:

⇒ ψ
LU∼ φ iff ψ = (⊗iUi)φ for local unitaries Ui

ψ
SLOCC∼ φ iff ψ = (⊗iAi)φ for invertible Ai

what can be learned?
single-copy, dimH <∞: Schmidt coefficients define LU classes,
Schmidt rank defines SLOCC-classes;
pure discrete multipartite states: 2 qubits: 2 SLOCC classes; 3
qubits: 6 SLOCC classes; 4 qubits: infinitely many...
quite intricate: e.g. n qubits/LU: [Kraus PRL 2010]; n qudits/SLOCC: [Gour
& Wallach PRL 2013]
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Entanglement of Multi-Mode Bosonic Gaussian
States: some notation...

symmetric, positive 2N × 2N covariance matrix γ

γ ≥ iσ, where σ = i ⊕N
k=1 σy

product state: γ = γ1 ⊕ γ2 ⊕ . . . γn

Gaussian local unitary (GLU): S = S1 ⊕ S2 ⊕ . . .Sn, where
SiσST

k = σ∀k (symplectic Sp(2nk ))
pure state: γσγ = σ (γ ∈ Sp(2N))
Euler decomposition S = O1QO2, where Oi ∈ SO(2N) ∩ Sp(2N);
Q = ⊕k diag(qk ,1/qk ),qk > 0
Williamson form: γ = SDST , where S ∈ Sp(2N),D = ⊕kdk12nk
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n-partite Gaussian States

simplest case: one mode per party: 1× 1× · · · × 1 states:

γ =


γ11 γ12 . . . γ1n

γT
12 γ22 . . .

...
...
γT

1n . . . γn−1n γnn


⇒ use GLU ⊕Sk to bring γ to standard form S(γ)

(defining its GLU-equivalence class)
1 pick Si to symplectically diagonalize γjj = λj1
2 passive local unitaries O = O1 ⊕ · · · ⊕On still undetermined

(Oj = eiαjσy ∈ SO(2))
3 chose Oj ,Ok to diagonalize γjk , j < k (or γT

jkγjk ) until all are fixed
4 generically: γ12 = diag(d12,d ′12), γT

1lγ1l = diag(d1l ,d1l ), dkl ≥ |d ′kl |
5 “degenerate cases γjk = 0,∝ O,∝ σzO allow to simplify a more γjk
⇒ n(2n − 2) free parameters (for n > 1)
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GLU standard form

GLU Standard Form and GLU Equivalence
Any 1× 1 · · · × 1 CM γ can be brought to standard form S(γ) by GLU.
Two CMs are GLU-equivalent iff they have the same standard form.

generic case: “simplifies”, but not that much:

γ =


λ11 D12 O3D13 . . . OnD1n

D12 λ21 γ23 . . .
...

...
D1nOT

n . . . γn−1n λnn1


for pure states exploiting the constraint σγσ = γ−1 allows further
simplification (for small n [Adesso et al.])
see also: Adesso et al, PRA 2006, 2007 (for generic states)
some extensions to n1 × n2 . . . nN [Adesso, Illuminati, Serafini, Wang, . . . ]
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Case Study: Pure Three-Mode States

characterized by three real parameters λ1, λ2, λ3 [Adesso PRA 2006]

γ(λ1, λ2, λ3) =

 λ11 D12 D13
D12 λ2 D23
D13 D23 λ31


λi + 1 ≤ λj + λk∀(ijk)

Dij = diag(d+
ij ,d

−
ij ) (function of the λ’s)

λi : local mixedness: measures entanglement of mode i with the
other two

⇒ γ(λ) more entangled than γ(λ′) if λi ≥ λ′i∀i
F states with different λ even belong to different LU classes (not just

GLU!)
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GLU vs. LU equivalence

of course ψ GLU∼ φ =⇒ ψ
LU∼ φ (and the reverse in general false)

⇒ there could be GLU-nonequivalent Gaussian states that are,
nevertheless, LU-equivalent
I know of no example; and for pure n ×m and 1× 1× 1 this does
not occur:
GLU-classes are in 1:1 correspondence with λk , i.e., the
Schmidt-coefficients (across different bipartitions)
these are LU invariant, hence ψ LU∼ φ implies ψ GLU∼ φ for pure
n ×m,1× 1× 1 Gaussian states
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Some examples

symmetric states λj = λ ≥ 1,

d± =
1

4λ

(
(λ2 − 1)±

√
9λ4 − 10λ2 + 1

)
det Dij < 0∀(ij)

? have been referred to as “GHZ-/W-state analogon” and as
“maximally entangled” (they maximize certain tripartite ent
measure and ent of two-mode reductions) [Adesso et al 2006]

other degenerate cases: Dij ∝ 1 implies λk = λi + λj − 1, and thus
Dik ,Djk ∝ σz (and Dij ∝ σz =⇒ one of the other D ∝ 1)
these states are obtained by coupling a two-mode squeezed state
with the vacuum at a beam splitter (1⊕B(θ))(γ(r)⊕1)(1⊕B(θ))T

in general: need TMSS γ(r) and three beam splitters B13,B23,B13
[Adesso et al. 2007]
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Maximal Entanglement?

? are the symmetric states λi = λ in that we can locally generate
any (λ1, λ2, λ3) from a suitable symmetric state?

⇒ need to go beyond GLU!
include Gaussian measurements: adjoin a Gaussian ancilla, apply
GLU, and perform Gaussian measurement on ancilla:
deterministic Gaussian local operation + classical communication
(“GLOCC”)
Gaussian measurement: POVM of projectors on Gaussian states
{|γ,d〉〈γ,d | : d ∈ Cd}; e.g.: γ = 1: heterodyne detection (optimal
joint measurement of X and P)
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GLOCC Transformations

Gaussian measurement transforms CM γ as [PRA 2002]

γ 7→ Γ1 − Γ12
1

Γ2 + γ
ΓT

12

where Γ =

(
Γ1 Γ12
ΓT

12 Γ2

)
is pure CM (Choi-Jamiolkowski state)

local operation implies: Γ = ⊕3
i=1Γi

can use Williamson form & Euler decomposition to parametrize Γ

not reversible (as a Gaussian operation) (in contrast to SLOCC!)
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Reminder: Bipartite GLOCC-transformability

all states GLU equivalent to product of two-mode squeezed states∣∣γ(~r)
〉
≡ ⊗k |γ(rk )〉 ∝ ⊗k

∑
n

tanhn(rk ) |n〉A ⊗ |n〉B

GLOCC allows only transformations to “less two-mode
squeezing”:

γ(~r)
GLOCC−→ γ(~s) iff sk ≤ rk∀k

⇒ neither strength of squeezing nor number of squeezed modes can
be increased
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GLOCC Trafos for Pure Three-mode States

? is transformation (λ1, λ2, λ3)→ (λ′1, λ
′
2, λ
′
3) possible by GLOCC?

sufficient to study how diagonal blocks change!
we have only necessary conditions:

λ′i ≤ λi ∀i (obviously)

|Dij | ≤ 0∀(ij) implies |D′ij | ≤ 0∀(ij)

what consequences? are there incomparable states?
three possibilities: (i) γ → γ′; (ii) γ′ → γ, or (iii) γ 6↔ γ′
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GLOCC Trafos for Pure Three-mode States II

consider simple families of states γ(λ1, λ2, λ3) such as
symmetric states γsymm(λ) = γ(λ, λ, λ)

shared two-mode squeezed states γs−tmss(r , θ)

(obtained by sending part of a two-mode squeezed state γ(r)
through a beam splitter with transmittivity cos2 θ)

γsymm(λ) has |Dij | ≤ 0∀(ij) while γs−tmss(r , θ) has |D23| > 0
⇒ γsymm(λ) 6→ γs−tmss(r , θ)!

converse is possible (for sufficiently large r )
=⇒ {γs−tmss(r , θ) : r ≥ 0} is a “more entangled set” than
{γsymm(λ) : λ ≥ 0} [cf. de Vincente et al., PRL 2013]

proof by direct calculation, applying the local operations
sequentially
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Conclusions and Outlook

provided standard form S(γ) for n-mode n-partite Gaussian states
that allows to determine the GLU class of all such states
showed that for pure three-mode states this leads to a nice
parametrization by local mixednesses alone (as already shown by
Adesso)
seen that there is a nontrivial hierarchy between pure 1× 1× 1
states in terms of their GLOCC-transformability

? is there a simple “maximal entangled family” (from which all others
can be locally produced)?

? what is the meaning (if any) of det D12 > 0 vs all three < 0? does
it generalize to more modes per site?
does det Dij ≤ 0 67→ det D12 > 0 hold for several copies?

? can we get coarser/more instructive classes by looking at
multi-copy trafos? approximate trafos? LOCC conversion?
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Thank you!

Giedke and Kraus, Phys. Rev. A 89 012335 (2014)

Giedke & Kraus, PRA 89 012335 (2014) GLU-equivalenc and GLOCC transformations 16 / 18



��������������
���
����

������� ���

���������

�������

���
����

��

��
��
��
�

���������

���
�
����

������

��
�

����
������� ��

����
��

�����
����

�������

��
�

��
���
���
�

�

����������

��
��
��
�

��
���
��

����

���
�

������
���

��
��
�

��

����

����

��
���

��
��
��
�

�
���

��������

������

����

��
��

��
��
��
���
�

��
��

��
��

����� ��

����

�
��
��

��
��
��
��

��
��

��
��

���
�

��
��

��
�

��
��
��

����

��

��
��

����

����

�
��
�

��

����

��
��

����

�����

��
��

��
��

�
��

���

���

����

����

�����

��

�

��
��
�

��

����

�

�

�

�
�

���
����

��

��

��

��

�

�

�

�

�

�

��

�

��

�

�

�

�

TOPOLOGICAL MATTER SCHOOL 2016  
August 22 - 26, 2016

Dario Bercioux 
Donostia International Physics 

Center

M. Reyes Calvo 
CIC NanoGune 

Donostia-San Sebastián

Maia G. Vergniory 
Donostia International Physics 

Center

François Konshelle  
CFM Donostia-San 

Sebastián

Scientific Coordination:

Palacio Miramar, 
Donostia-San Sebastián 

This one week summer 
school will provide several 
extended lectures by leading 
experts on aspects of 
topological matter. The 
lecturers will give graduate 
level presentations 
introducing to state-of-the-art 
methods and techniques 
featuring the key issues of the 

field of topological matter. 
The school lectures are 
complemented by practical 
sessions on computer 
implementation of 
topological properties in 
numerical codes. While the 
school is primarily aimed at 
instructing PhD students and 
young postdoctoral 

researchers, more senior 
scientists who want to 
acquaint themselves with the 
subject of the school are also 
welcome. 
Registrations: 
http://tms16.sciencesconf.org  
Deadline 24.03.2016.

List of Lecturers: 

Mois Aroyo (UPV/EHU Bilbao) Ingrid Mertig (University of Halle-Wittenberg)

Alexander Altland (University of Cologne) Ivo Souza (CFM Donostia-San Sebastián)

Andrei Bernevig (Princeton University) Alexey Soluyanov (ETH Zürich)

Claudia Felser (Max Planck Dresden)

dipc.ehu.es

Summerschool

Nanotechnology meets

Quantum Information

July 11 to 14, 2016 — Donostia-San Sebastián

Ever smaller and better designed semiconductor structures are reaching the
quantum realm, leading to new promises and challenges in information pro-
cessing. In the school ”Nanotechnology meets Quantum Information” seven
leading experts will provide a comprehensive and broad overview about different
implementations for both quantum information processing and quantum sim-
ulation enabled by recent progress in nanotechnologies and the experimental
and theoretical challenges in exploring the prospects of quantum computing,
quantum simulation, and the physics of quantum many-body systems.

Information and Registration: http://nanoqi.dipc.org/

Application Deadline: April 30th, 2016

School fee: 200EUR

Lectures by:

Darrick E. Chang Liang Fu Ataç Imamoğlu Daniel Loss

J. Ignacio Cirac Mikhail D. Lukin Andreas Wallraff

Organization: Géza Giedke (DIPC)
Alejandro González-Tudela (MPQ)
J. Ignacio Cirac (MPQ)

email: nanoqi@dipc.org
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GLOCC transformations of γ(λ)

step 1: from (λ, λ, λ) we can prepare any (λ′1, λ
′
2, λ
′
2) with

λ ≥ λ′2 ≥ λ′1 by GLOCC on first mode alone
step 2: from (λ′1, λ

′
2, λ
′
2) by acting on 2nd mode: get only

det D12 ≤ 0 states
step 3: from (λ′′1, λ

′′
2, λ
′′
3) with det D12 ≤ 0 states, a state with

det D12 > 0 cannot be prepared
in contrast, from the shared two-mode squeezed states with
det D23 > 0 we can obtain all symmetric states (given enough
initial squeezing), i.e. we can make the third determinant negative
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