## Security proofs for continuous-variable QKD

#### Anthony Leverrier

#### Inria Paris

#### Recent advances in CV quantum information theory

7 April 2016, Barcelona

# **Executive summary**

According to the introduction of a lot of papers, everything looks ok...

# Executive summary

According to the introduction of a lot of papers, everything looks ok...

But in fact, the issue is far from settled:

- Gaussian attacks are NOT known to be optimal, even in the asymptotic limit! (except for one protocol)
- finite-size security available only for a single protocol (squeezed states and homodyne detection)

# Executive summary

According to the introduction of a lot of papers, everything looks ok...

But in fact, the issue is far from settled:

- Gaussian attacks are NOT known to be optimal, even in the asymptotic limit! (except for one protocol)
- finite-size security available only for a single protocol (squeezed states and homodyne detection)

To be clear, except for these 2 protocols, we don't even know how to bound the Devetak-Winter bound:

$$I(A; B) - \chi(A; E)$$

# Continuous-variable QKD

## QKD with continuous variables

- ► quite recent T.C. Ralph **PRA 61** 010303(R) (1999)
- information encoded on the quadratures (X, P) of the EM field
- measured with homodyne / heterodyne (interferometric) detection
- infinite dimension  $\Rightarrow$  usual proof techniques don't apply

## With coherent states

- ► much more practical! Grosshans, Grangier PRL 88, 057902 (2002)
- Alice sends coherent states  $|\alpha\rangle$ , with  $\alpha \sim \mathcal{N}(0, V_A)_{\mathbb{C}}$
- Bob measures with homodyne or heterodyne detection
- no need for single-photon counters
- ▶ no need for squeezing, only standard telecom components
- additional symmetries: useful for security analysis

## Experimental results



[60] Jouguet *et al*, Nat. Photon. 7 378–381 (2013): Gaussian attacks in finite size regime
[61] Gehring *et al* Nat.Comm. 6 8795 (2015): composable security in finite size regime
[62] Lance *et al* Phys. Rev. Lett. 95 180503 (2005): Gaussian attacks in asympt. regime

Anthony Leverrier (INRIA)

Security proofs for CVQKD

7 April 2016 4 / 1

# Prepare-and-Measure vs Entanglement-based

#### Prepare-and-Measure (i.e. most implementations)

- Protocol characterized by
  - input states: coherent or squeezed
  - modulation: Gaussian, discrete...
  - Bob's measurement: homodyne or heterodyne

For ex, Alice prepares the cq state:  $\rho_{X^n B_0^n} = \bigotimes_{i=1}^n \int dx_i \rho(x_i) |x_i\rangle \langle x_i| \otimes |\Phi_{x_i}\rangle \langle \Phi_{x_i}|$ 

State after quantum channel: 
$$\mathcal{N} : B_0^{\otimes n} \to B^{\otimes n}$$
:  

$$\rho_{X^n B^n} = \Big(\bigotimes_{i=1}^n \int \mathrm{d}x_i p(x_i) |x_i\rangle \langle x_i| \Big) \otimes \mathcal{N}\Big(\bigotimes_{i=1}^n |\Phi_{x_i}\rangle \langle \Phi_{x_i}| \Big)$$

▶ Joint classical distribution after Bob's measurement:  $\mathcal{M}_B: B^{\otimes n} \to Y^{\otimes n}$ 

$$\rho_{X^nY^n} = \Big(\bigotimes_{i=1}^n \int \mathrm{d}x_i \rho(\mathbf{x}_i) |\mathbf{x}_i\rangle \langle \mathbf{x}_i| \Big) \otimes \mathcal{M}_B \left( \mathcal{N}\Big(\bigotimes_{i=1}^n |\Phi_{\mathbf{x}_i}\rangle \langle \Phi_{\mathbf{x}_i}| \Big) \right)$$
$$= \int \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{y} \tilde{\rho}(\mathbf{x}, \mathbf{y}) |\mathbf{x}_1 \cdots \mathbf{x}_n, \mathbf{y}_1 \cdots \mathbf{y}_n\rangle \langle \mathbf{x}_1 \cdots \mathbf{x}_n, \mathbf{y}_1 \cdots \mathbf{y}_n|$$

- security is difficult to analyze for the Prepare-and-Measure protocol
- ▶ requires a statement that holds for any quantum channel  $\mathcal{N}: B_0^{\otimes n} \to B^{\otimes n}$

Anthony Leverrier (INRIA)

Security proofs for CVQKD

# Prepare-and-Measure vs Entanglement-based

## E-B protocol: purification of Alice's system

Note that the state ρ<sub>X<sup>n</sup>B<sup>n</sup></sub> can result from Alice's measurement on an entangled bipartite state: M<sub>A</sub> : A<sup>⊗n</sup> → X<sup>⊗n</sup>

 $\rho_{X^n B^n} = (\mathcal{M}_A \otimes \mathrm{id}_B)(\rho_{A^n B^n})$  $= (\mathcal{M}_A \otimes \mathcal{E})(\rho_{A^n B^n_0})$ 

where  $\mathcal{M}_A$  is controlled by Alice.

- for many protocols,  $\mathcal{M}_A$  and  $\rho_{A^n B_0^n}$  are rather simple: e.g., heterodyne measurement on two-mode squeezed vacuum states  $\Leftrightarrow$  Gaussian modulation of coherent states
- to prove security, one should consider all possible states  $\rho_{A^nB^n}$
- usually simpler than considering channels

# Composable security in QKD

 $\begin{array}{rcl} \mathsf{QKD} \ \mathsf{protocol} = \mathsf{CPTP} \ \mathsf{map} \ \mathcal{E} \\ & \mathcal{E} \colon \ \mathcal{H}_A^{\otimes n} \otimes \mathcal{H}_B^{\otimes n} & \to & \mathcal{S}_A \otimes \mathcal{S}_B \otimes \mathcal{C} \\ & & \rho_{A^n B^n} & \mapsto & \rho_{S_A, S_B, C}. \end{array}$ 

It doesn't really matter what Eve does: wlog, she holds a system E that purifies  $\rho_{A^nB^n}$ .

## Requirements

• correctness: 
$$\mathbb{P}[S_A \neq S_B] \leq \epsilon_{corr}$$

• secrecy: 
$$\frac{1}{2} \left\| \rho_{S_A E} - \left( \frac{1}{2^k} \sum_{\vec{k}} |\vec{k}\rangle \langle \vec{k} | \right) \otimes \rho_E \right\|_1 \le \epsilon_{\text{sec}}$$

• 
$$\mathcal{E}$$
 is  $\epsilon$ -secure if  $\epsilon_{corr} + \epsilon_{sec} \le \epsilon$ 

• robustness:  $p_{abort} = \epsilon_{rob}$  (small!) if passive adversary

In other words, for any purification  $|\Psi\rangle_{ABE}$  of  $\rho_{A^nB^n}$ ,

$$(\mathcal{E}_{AB}\otimes \mathrm{id}_{E})|\Psi
angle_{ABE}pprox_{\epsilon}\left[rac{1}{2^{k}}\sum_{\vec{k}}|\vec{k},\vec{k}
angle\langle\vec{k},\vec{k}|
ight]_{AB}\otimes
ho_{E}$$

where  $\mathcal{H}_A, \mathcal{H}_B$  are *n*-mode Fock spaces.

Anthony Leverrier (INRIA)

# Different notions of security

Denote  $\rho_{S_A S_B E} = \mathcal{E}_{AB} \otimes \mathrm{id}_E(\rho_{A^n B^n E})$  and  $\tau_{SS} = \frac{1}{2^k} \sum_{\mathbf{k}} |\mathbf{k}, \mathbf{k}\rangle \langle \mathbf{k}, \mathbf{k}|$ 

## From strongest to weakest:

1. Composable security against arbitrary attacks:

if explicit bound on  $\frac{1}{2} \| \rho_{S_A S_B E} - \tau_{SS} \otimes \rho_E \|_1 \leq \varepsilon$  for any  $\rho_{A^n B^n E}$ 

2. Composable security against collective attacks:

same, but restricted to  $\rho_{A^nB^n} = (\rho_{AB})^{\otimes n}$ 

 $\blacktriangleright$  (2)  $\Longrightarrow$  (1) thanks to de Finetti [Renner,Cirac PRL 2009] but with huge loss in arepsilon

# Different notions of security

Denote  $\rho_{S_A S_B E} = \mathcal{E}_{AB} \otimes \mathrm{id}_E(\rho_{A^n B^n E})$  and  $\tau_{SS} = \frac{1}{2^k} \sum_{\mathbf{k}} |\mathbf{k}, \mathbf{k}\rangle \langle \mathbf{k}, \mathbf{k}|$ 

## From strongest to weakest:

1. Composable security against arbitrary attacks:

if explicit bound on  $\frac{1}{2} \| \rho_{S_A S_B E} - \tau_{SS} \otimes \rho_E \|_1 \leq \varepsilon$  for any  $\rho_{A^n B^n E}$ 

2. Composable security against collective attacks:

same, but restricted to  $\rho_{A^nB^n} = (\rho_{AB})^{\otimes n}$ 

3. Asymptotic security against collective attacks assuming the covariance matrix of  $\rho_{XY}$  is known  $\Rightarrow$  not composable!

if known upper bound on  $\chi(X; E)$  (Devetak-Winter formula)

- (2) ⇒ (1) thanks to de Finetti [Renner,Cirac PRL 2009] but with huge loss in ε
   (3) uses Gaussian optimality: [Wolf et al PRL 2005], [Garcia-Patron, Cerf PRL 2006], [Navascues, Grosshans Acin PRL 2006]
   (3) + de Finetti ⇒ (1)
- ▶ Important unproven conjecture: Gaussian attacks are optimal

# Main message of this talk

 de Finetti and "extremality of Gaussian states" are not sufficient to establish security against general attacks

 Gaussian attacks are well understood [Pirandola *et al.*, *PRL* 2008] but we don't know whether they are optimal, even in the asymptotic limit

The issue lies in the estimation of the classical covariance matrix Γ(ρ<sub>XY</sub>) which is unbounded a priori.

 $\implies$  discrete-variable tomography techniques don't apply!

 For almost all protocols (except coh. states + heterodyne), no explicit procedure to estimate Γ(ρ<sub>XY</sub>)

# Parameter Estimation: the issue

## One needs to define a protocol $\mathcal{PE}(n, \varepsilon)$ :

For any state  $\rho^{\otimes n} \in \mathcal{H}^{\otimes n}$ :

- 1. fix  $k \leq n$ , the number of samples
- 2. observe k subsystems (e.g. k copies of  $\rho$ )
- 3. output a confidence region  $\mathcal{R}_{\varepsilon,n}$  for the CM of the n-k remaining subsystems such that

 $\Pr[\Gamma(\rho^{\otimes (n-k)}) \in \mathcal{R}_{\varepsilon,n}] \ge 1 - \varepsilon$ 

## Asymptotic limit

Take  $n \to \infty$  and hope that  $\operatorname{size}(\mathcal{R}_{\varepsilon,n}) \to 0$  and  $\varepsilon \to 0$ 

## Problem

For any  $\mathcal{PE}(n,\varepsilon)$  as above, there exists  $\rho$  that makes the protocol fail:

e.g. 
$$\rho = (1 - \delta)|0\rangle\langle 0| + \delta|N\rangle\langle N|, \quad \Gamma = \begin{bmatrix} 1 + N\delta/2 & 0\\ 0 & 1 + N\delta/2 \end{bmatrix}$$

But tomographic procedure that only examines  $k \ll 1/\delta$  modes will conclude  $\Gamma \approx 1$ , which is clearly incorrect if  $N\delta \gg 1$ .

Anthony Leverrier (INRIA)

# Parameter Estimation: the issue

## Solutions

- 1. Assume finite higher moments  $\Rightarrow$  no composable security...
- 2. Assume a Gaussian distribution  $\Rightarrow$  no composable security...
- 3. Symmetrize the state! ok for protocol with coherent states and heterodyne detection [AL, *PRL* 2015]

## **OPEN PROBLEM**

robust estimation of CM with homodyne detection

Recall that a QKD protocol is essentially a tomographic procedure that checks that A and B are sufficiently "correlated" to decide whether they can distill a secret key.

 $\implies$  Parameter estimation is the central part of any security proof, not a simple technicality

# Current security status of the main CVQKD protocols

| Protocol           | (PM) State  | (PM)<br>Modul | Bob's          | Best available                                                                                       |
|--------------------|-------------|---------------|----------------|------------------------------------------------------------------------------------------------------|
|                    | preparation | iviouui.      | measurement    | security provis                                                                                      |
| Cerf-Levy          | squeezed    | Gaussian      | homo           | composable [Furrer et al PRL 2012]                                                                   |
| -van Assche        |             |               |                | $K^{\varepsilon}(N) > 0$ for practical N                                                             |
| 2001               |             |               |                | $\lim_{N\to\infty} K^{\varepsilon}(N) < K^{\mathrm{asympt}}_{\mathrm{coll}}$                         |
| Weedbrook et al    | coherent    | Gaussian      | hetero         | composable [AL PRL 2015]                                                                             |
| 2004               |             |               |                | $\mathcal{K}^{arepsilon}_{	ext{coll}}(N) pprox \mathcal{K}^{	ext{asympt}}_{	ext{coll}}$ for pract. N |
| (also MDI CVQKD)   |             |               |                | $K^{\varepsilon}(N) = 0$ for practical N [AL et al PRL 2013]                                         |
| Grosshans          | coherent    | Gaussian      | homo           | asympt. collective assum. CM                                                                         |
| -Grangier 2002     |             |               |                | [GC PRL 2006], [NGA PRL 2006]                                                                        |
| Usenko -           | coherent    | Gaussian 1D   | homo           | asympt. collective assum. CM                                                                         |
| Grosshans 2015     |             |               |                | [Usenko-Grosshans PRA 2015]                                                                          |
| Garcia-Patron      | squeezed    | Gaussian      | hetero         | asympt. collective assum. CM                                                                         |
| -Cerf 2009         |             |               |                | [Garcia-Patron-Cerf PRL 2009]                                                                        |
| Filip 2008         | thermal     | Gaussian      | homo/hetero    | asympt. collective assum. CM [Usenko-                                                                |
|                    |             |               |                | Filip PRA 2010] [Weedbrook et al PRL 2010]                                                           |
| Madsen et al 2013  | squeezed    | Gaussian +    | homo           | asympt. collective assum. CM                                                                         |
|                    |             | add. Gauss.   |                | [Madsen et al Nat. Comm. 2013]                                                                       |
| Fiurásek-Cerf 2012 | coherent    | Gaussian      | homo/hetero    | asympt. collective assum. CM [Fiurásek                                                               |
| Walk et al 2013    |             |               | Gauss. postsel | -Cerf PRA 2012] [Walk et al PRA 2013]                                                                |
| Pirandola et al    | Two-way QKD |               | homo/hetero    | asympt. collective assum. CM                                                                         |
| 2008               |             |               |                | [Ottaviani et al PRA 2015]                                                                           |

For other protocols, security is only established against Gaussian attacks: e.g., protocols with non Gaussian modulation, or with postselection.

# Security proofs: state-of-the-art

Two main approaches:

- 1. Entropic uncertainty principle
- 2. [reduction: coll.  $\Rightarrow$  general] + [Security against coll. attacks]

# Entropic Uncertainty Principle • tightest key rate for BB84 M. Tomamichel et al. Nat. Comm. 3 634 (2012) • successfully ported to CV F. Furrer et al. PRL 109 100502 (2012) • compatible with reverse reconciliation F. Furrer PRA 90, 042325 (2015) • experiment! T. Gehring et al. Nat.Comm. 6 8795 (2015)

## but . . .

- requires squeezing
- discrepancy with asymptotic secret key rate for Gaussian attacks

 $\Rightarrow$  not very tolerant to losses

Anthony Leverrier (INRIA)

Security proofs for CVQKD

# Security proofs: state-of-the-art

Two main approaches:

- 1. Entropic uncertainty principle
- 2. [reduction: coll.  $\Rightarrow$  general] + [Security against coll. attacks]

Collective attacks are optimal (in the limit  $n \to \infty$ )

- ► de Finetti theorem R. Renner, J.I. Cirac, *PRL* 102 110504 (2009)
- "Postselection technique" (de Finetti reduction)
   AL, R. García-Patrón, R. Renner, N.J. Cerf, PRL 110 030502 (2013)

Composable security proof against collective attacks

Most proofs assume that the covariance matrix is given NGA, GC, *PRL* (2006)  $\Rightarrow$  not sufficient

Only exception: coherent states + heterodyne detection

 $\Rightarrow$  symmetries of the protocol allow for an assumption-free estimation of the covariance matrix  $$\rm AL,\ \it PRL\ 114\ 070501\ (2015)$$ 

# Numerical results for $\epsilon = 10^{-20}$ (for collective attacks)

AL, PRL 114 070501 (2015)



Reasonable experimental parameters:

- distance = 1 km, 10 km, 50 km, 100 km
- excess noise: 1% of shot noise
- reconciliation efficiency  $\beta = 90\%$
- $\blacktriangleright~\epsilon_{\rm rob} \approx 1\%$  (prob. that the protocol aborts for a passive channel)

# Limitations of current proof techniques

## Entropic uncertainty relation:

- does not seem able to match the bound corresponding to Gaussian attacks
- fails for coherent state protocols
- de Finetti-type reductions:
  - exponential de Finetti of Renner-Cirac: no hope in the finite-size regime (already the "worst" technique for discrete variables)
  - "Postselection technique":
    - $\blacktriangleright$   $\varepsilon\text{-secure}$  against collective attacks  $\implies$   $\varepsilon'\text{-secure}$  against general attacks with

$$\varepsilon' = \varepsilon n^{d^4}$$

- much better than de Finetti for DV [Christandl, Koenig, Renner PRL 2009]
- continuous variable version obtained by truncating the Hilbert space for each mode [AL, Garcia-Patron, Cerf, Renner PRL 2013]
   ⇒ local dimension = O(log n)

# New results in preparation (with Matthias Christandl)

better de Finetti reductions tailored for CV

based on a quite old idea:

"Security of continuous-variable quantum key distribution: towards a de Finetti theorem for rotation symmetry in phase space"

AL, Karpov, Grangier, Cerf NJP 2009

# Idea behind de Finetti reductions

1. Most protocols are permutation-invariant

 $\implies$  it is typically enough to prove security for  $\rho_{A^nB^n}$  such that

$$\pi \rho_{A^n B^n} \pi^{\dagger} = \rho_{A^n B^n} \quad \forall \pi \in S_n$$

 $\implies$  There exists a purification of  $\rho$  in the symmetric subspace.

- 2. The symmetric subspace is **much smaller** than the full space: for *n* qudits:
  - ▶ Full space:  $(\mathbb{C}^d)^{\otimes n} \implies$  exponential dimension  $d^n$
  - Symmetric subspace

$$ee ^n \mathbb{C}^d = \left\{ ert \psi 
angle \in \mathbb{C}^d 
ight)^{\otimes n} : \pi ert \psi 
angle = ee \psi 
angle \quad orall \pi \in S_n 
ight\}$$
  
 $\dim \left( \, ee^n \, \mathbb{C}^d 
ight) = inom{n+d-1}{n} \le (n+d-1)^d$ 

 $\implies$  polynomial dimension!

# Main tool: an operator equality

#### Theorem 1

$$\vee^{n} \mathbb{C}^{d} = \operatorname{Span}\{|\phi\rangle^{\otimes n} : |\phi\rangle \in \mathbb{C}^{d}\}$$

The symmetric space is spanned by i.i.d. states.

Theorem 2

$$\Pi_{\vee^n \mathbb{C}^d} = \binom{n+d-1}{n} \int \left( |\phi\rangle\!\langle\phi| \right)^{\otimes n} \mathrm{d}\phi$$

where  $d\phi$  is the Haar measure over U(d)

## Consequence for QKD [Christandl-Koenig-Renner PRL 2009]

 $\varepsilon\text{-security}$  against collective attacks  $\implies \varepsilon'\text{-security}$  against general attacks with

$$\varepsilon' = \binom{n+d-1}{n} \varepsilon = O(\varepsilon n^{d_A^2 d_B^2})$$

and  $d = d_A^2 d_B^2$  (ex: d = 16 for BB84)

# Moving to continuous variables

$$\Pi_{\vee^n \mathbb{C}^d} = \binom{n+d-1}{n} \int \left( |\phi\rangle\!\langle\phi| \right)^{\otimes n} \mathrm{d}\phi$$

only makes sense in finite dimension.

 $\implies$  truncate the Hilbert space.

## Truncation

- Intuitively, each mode contains a thermal state
- It should be possible to replace  $\mathcal{H} = \operatorname{Span}\{|0\rangle, |1\rangle, \ldots\}$  by

$$\hat{\mathcal{H}} = \operatorname{Span}\{|0\rangle, |1\rangle, \dots, |d_{\mathsf{max}}\rangle\}$$

with  $d_{\max} = O(\text{average energy})$ .

• unfortunately, if we want that  $tr(\rho^{\otimes n}\Pi_{\hat{\mathcal{H}}^{\otimes n}}) \geq 1 - \varepsilon$ , then we need:

 $d_{\max} = O(\text{average energy} \times \log n)$ 

$$\implies \varepsilon' = O(\varepsilon n^{\log^4 n})$$

[AL, Garcia-Patron, Cerf, Renner PRL 2013]

# Symmetry in phase space

Consider the group of transformations generated by linear optical networks on n modes: isomorphic to U(n):

$$ec{a} 
ightarrow uec{a}, \quad ec{a}^{\dagger} 
ightarrow u^{\dagger} ec{a}^{\dagger}$$

For any linear passive transform.  $u \in U(n)$  in phase space, there exists  $R \in O(2n)$  such that:



 $\implies$  *u* commutes with heterodyne detection

The protocol where Alice prepares two-mode squeezed vacuum states, and where both parties perform heterodyne measurements is in fact invariant under  $u_A \otimes u_B^*$  for any  $u \in U(n)$ 

Anthony Leverrier (INRIA)

Security proofs for CVQKD

# Towards a CV version of de Finetti

## CV protocols are more symmetric than BB84

One can assume that  $\rho_{A^nB^n}$  is invariant under the action of the unitary group U(n):

$$(u_A \otimes u_B^*) \rho_{A^n B^n} (u_A \otimes u_B^*)^{\dagger} = \rho_{A^n B^n} \quad \forall u \in U(n)$$

Note that  $S_n \subset U(n)$ 

#### Define a new symmetric subspace

$$\begin{split} & \text{Sym} = \{ |\phi\rangle \in \mathcal{H}_A^{\otimes n} \otimes \mathcal{H}_B^{\otimes n} : \ u_A \otimes u_B^* |\phi\rangle \quad \forall u \in U(n) \} \\ & u^* = \text{ complex conjugate } \end{split}$$

It's a subspace of the usual symmetric subspace since  $S_n \subset U(n)$ .  $\dim(\text{Sym}) = \infty$ Note that two-mode squeezed vacuum states belong to that space.

# The "continuous-variable" / unitary symmetric subspace Theorem 1

$$Sym = Span\{|\lambda\rangle^{\otimes n} : |\lambda| < 1\}$$

where  $|\lambda\rangle$  is the two-mode squeezed state with squeezing parameter  $\lambda$ :

 $|\lambda\rangle\propto\exp(\lambda a^{\dagger}b^{\dagger})|\mathrm{vacuum}\rangle$ 

## Theorem 2

For  $n \geq 2$ ,

$$\Pi_{\text{Sym}} = \frac{n-1}{\pi} \int_{|\lambda| < 1} \frac{1}{(1-|\lambda|^2)^2} (|\lambda\rangle\!\langle\lambda|)^{\otimes n} \mathrm{d}\lambda$$

with  $d\lambda =$  uniform measure on open unit disk.

Similarity with:

$$\Pi_{\vee^{n}\mathbb{C}^{d}} = \binom{n+d-1}{n} \int \left( |\phi\rangle\!\langle\phi| \right)^{\otimes n} \mathrm{d}\phi$$

Anthony Leverrier (INRIA)

Security proofs for CVQKD

# Conclusion and perspectives

- security of CV QKD is not settled
- ► Main open conjecture: Gaussian attacks are asymptotically optimal
- ▶ new approach: a more useful symmetric subspace for CV protocols based on the invariance under the unitary group in C<sup>n</sup>
- gives a good reduction from collective to general attacks in the finite-size setting!